Seng klorida

Saka Wikipédia Jawa, bauwarna mardika basa Jawa
Seng klorida
220x220px|Seng klorida hidrat
220x220px
Nama
Nama IUPAC
Seng klorida
Nama lain
Seng(II) klorida

Seng diklorida

Butter of zinc
Penanda
Model 3D (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.028.720
Nomor EC 231-592-0
PubChem <abbr title="<nowiki>Compound ID</nowiki>">CID
Nomor RTECS ZH1400000
UNII
Nomor UN 2331
Sifat
ZnCl2
Massa molar 136.315 g/mol
Penampilan Padatan kristalin putih

sangat higroskopis
Bau Tak berbau
Densitas 2.907 g/cm3
Titik lebur 290 °C (554 °F; 563 K)[1]
Titik didih 732 °C (1350 °F; 1005 K)[1]
432.0 g/ 100 g (25 °C)
Kelarutan larut dalam etanol, gliserol dan aseton
Kelarutan dalam alkohol 430.0 g/100ml
−65.0·10−6 cm3/mol
Struktur
Tetrahedral, linear dalam fasa gas
Farmakologi
Kode ATC B05XA12
Bahaya
Lembar data keselamatan External MSDS Archived 2007-07-01 at the Wayback Machine.
Berbahaya (Xn)

Korosif (C)

Berbahaya bagi lingkungan (N)
Frasa-R R22, R34, R50/53
Frasa-S (S1/2), S26, S36/37/39, S45, S60, S61
Dosis atau konsentrasi letal (LD, LC):
350 mg/kg (tikus, oral)

350 mg/kg (tikus, oral)

200 mg/kg (guinea pig, oral)

1100 mg/kg (rat, oral)

1250 mg/kg (tikus, oral)[2][3]
1260 mg/m3 (tikus, 30 min)

1180 mg-min/m3[2]
Batas imbas kesehatan AS (NIOSH):
PEL (yang diperbolehkan)
TWA 1 mg/m3 (uap)[3]
REL (yang direkomendasikan)
TWA 1 mg/m3 ST 2 mg/m3 (uap)[3]
IDLH (langsung berbahaya)
50 mg/m3 (uap)[3]
Senyawa terkait
Anion lain
Seng fluorida

Seng bromida

Seng iodida
Kation lainnya
Kadmium klorida

Raksa(II) klorida
Kecuali dinyatakan lain, data di atas berlaku pada temperatur dan tekanan standar (25 °C [77 °F], 100 kPa).
pra=|al=|14x14pxN verifikasi (apa ini pra=|al=Ya|7x7pxYpra=|al=|8x8pxN ?)
Sangkalan dan referensi

Seng klorida ya iku salah sawijining senyawa kimia kanthi rumus kimia ZnCl 2 lan hidraté. Seng Klorida, ing e sangang wangun kristalé, dimangertèni minangka kristal putih sing ora ana warna, lan larut banget ing banyu. ZnCl 2 dhewé yaiku hygroscopik . Sampel saka senyawa iki kudu direksa saka sumber kelembapan, kalebu kelembapan banyu sing ditemokaké ana ing hawa ambien. Seng klorida nduwéni aplikasi ing pamrosesan tekstil, fluks metalurgi, lan ing sintesis kimia. Ora ana mineral kang nduweni komposisi kimia sing dimangerténi uga sakliyané mineral langka simonkolleite, Zn 5 (OH) 8 Cl 2 · H 2 O.

Struktur lan sipat[besut | besut sumber]

Wangun awujud kristallin ( polimorf ) saka ZnCl 2 dikenal: α, β, γ, lan δ, lan ing saben kasus ion Zn 2+ kaordinasi tetrahedron karo papat ion klorida.[4]

Bentuke Simetri Simbol Pearson Klompok iki Ora Ana. a (nm) b (nm) c (nm) Z ρ (g / cm 3 )
α Tetragonal t12 Aku 4 2d 122 0.5398 0.5398 0.64223 4 3.00
β Tetragonal tp6 P4 2 / nmc 137 0.3696 0.3696 1.071 2 3.09
γ Monoclinic mP36 P2 1 / c 14 0.654 1.113 1.23328 12 2.98
δ Orthopedic oP12 Pna2 1 33 0.6125 0.6443 0.7693 4 2.98

Ing kene, a, b, lan c minangka konstanta kisi, Z ya iku gungguné struktur per sel satuan lan ρ ya iku kapadhetan sing dicacah saka parameter struktural.[5][6][7]

Bentuk orthorhombic (δ) anhidrat murni lan cepet ngowahi salah sawijining wangun ana ing paparan atmosfer sing liyané lan wedharan kang mungkin yaiku menawa ion OH - sing asalé saka banyu sing diserap dadi luwih gampang kanggo nyusun ulang.[4] Panganyep cepet saka dledekan ZnCl 2 ngasilaké kaca .[8]

Sipat kovalen ing materi anhidrat dituduhaké dening titik leleh sing relatif kurang 275   °C.[9] bukti kang luwih kanggo kovalensi ditandani dening sipat nyampur nyawiji kang dhuwur ing diklorida ing pe;arut etereal iku ngewangun adducts karo rumus ZnCl 2 L 2, ana kene L = ligan kaya ta O (C <sub id="mwZg">2</sub> H <sub id="mwZw">5)</sub> <sub id="mwaA">2</sub> . Ana ing fase gas, molekul ZnCl 2 ngewangun linear kanthi dawa iketan 205 pm.[10]

Dledekan ZnCl 2 nduweni viskositas kang dhuwur ing titik leleh lan konduktivitas elektrikal sing relatif cendhek sing mundhak nyata saka hawa.[10][11] Sinau hamburan Raman sing miturut nuduhake anané struktur polimer [12] lan studi panyebaran neutron nuduhaké anané kompleks tetrahedral {ZnCl 4 }.[13]

Hidrat[besut | besut sumber]

Limang hidrat saka seng klorida sing dimangerteni, ZnCl 2 (H 2 O) n n = 1, 1.5, 2.5, 3 lan 4.[14] Tetrahydrate ZnCl 2 (H 2 O) 4 kristal saka larutan mbanyu seng klorida.[14]

Preparasi lan Pamurnèn[besut | besut sumber]

ZnCl 2 anhidrat bisa dicepakaké saka seng lan hidrogen klorida .

Zn (s) + 2 HCl → ZnCl 2 + H 2 (g)

Bentuk hidrasi lan larutan banyu bisa disiapaké kanthi cara sing padha kanthi réaksikaké logam Zn karo asam klorida. Seng oksida lan seng sulfida bereaksi karo HCl:

ZnS ( s ) + 2 HCl (aq) → ZnCl 2 (aq) + H <sub id="mwiA">2</sub> S ( g )

ora kaya unsur-unsur sanesipun, seng sakmenika namung wonten ing satunggaling kadadeyan oksidasi, 2+, ingkang nyederhanake pamurnian klorida.

Tuladha seng klorida komersial biasane ngandhut banyu lan produk saka hidrolisis minangka pangreged. Sampel kasebut bisa diresiki dening recrystallization saka dioxane panas. Sampel anhidrat bisa dimurnèkaké kanthi sublimasi ing aliran gas hidrogen klorida, diiringi pamanasan sublimasi ing 400   °C ing kahanan garing aliran gas nitrogen . Pungkasané, metode paling gampang gumantung ing opènan seng klorida karo thionil klorida .[15]

Reaksi[besut | besut sumber]

ZnCl 2 meleleh ing suhu 500-700   °C ngeculake logam seng, lan, kanthi cepet ing leleh, kaca diamagnetik kuning dibentuk, sing ing panliten Raman nuduhake isi ion Zn22+ .[14]

Sawetara uyah ngemot Anion tetraklorozinkat, Zn Cl42− sing dikenal.[10] "Reagent Caulton," V 2 Cl 3 (THF) 6 Zn 2 Cl 6 iku salah siji conto saka uyah ngemot Zn 2 Cl62− [16][17] Cs 3 ZnCl 5 ngandhut ZnCl Cl42− tetrahedral lan anion Cl - .[4] Ora senyawa ngemot Zn ion Cl64− sing wis ditondoi.[4]

Nalika zink klorida larut banget ing banyu, larutan kasebut ora bisa dianggep ngandhut ion Zn 2+ lan Cl - ion, ZnCl x H 2 O (4 - x) sing uga ana.[18][19][20] ZnCl 2 solusi banyu sing ngandhut asam: larutan banyu kanthi konsentrasi 6 M nduweni pH 1.[14] Keasaman dari larutan ZnCl 2 banyu saka garam Zn 2+ liyane yaiku amarga pembentukan kompleks aqua aoro tetrahedra sing ngurangi angka koordinasi saka 6 nganti 4 luwih nyuda kekuatan ikatan OH ing molekul banyu sing wis solvasi.[21]

Aplikasi[besut | besut sumber]

Penggunaan inisial seng klorida (Silzic) ing bangunan rangka karbon kanthi ngirangaken molekul methanol . Produk hidrokarbon tak jenuh minangka produk utama, kanthi kondisi reaksi sing nyebabake distribusi produk, sanajan ana senyawa aromatik sing dibentuk.[22] Taun 1880, ditemokake yen seng klorida cair ngilangake reaksi aromatik sing digawé hexamethylbenzene . Ing titik lebur ZnCl 2 (283   °C), reaksi kasebut ΔG saka -1090   kJ   mol −1 lan bisa olih kanggo:[23]

15 CH3OHC6(CH3)6 + 3 CH4 + 15 H2O

Panemu reaksi iki dirasionalake amarga iku melu kondensasi unit methylene sing diikuti dening Metilasi lengkap Friedel-Crafts cincin benzene sing diprodhuksi ing chloromethane situ .[23] Transformasi alkilasi kasebut minangka aplikasi saka kekuwatan seng moderat minangka asam Lewis, sing dadi peran utama ing sintesis laboratorium. Conto liyane kalebu catalyzing (A) sintesis indole Fischer,[24] lan uga (B) reaksi acylation Friedel-Craft sing nyakup dering aromatik sing aktif.[25][26]

480x480px

Saliyane kuwi, produksi pewarna fluorescein klasik saka phthalic anhydride lan resorcinol, kang nyakup acylation Friedel-Crafts .[27] Transformasi iki bener-bener wis digayuh kanthi nggunakake sampel ZnCl 2 sing terhidrasi ing gambar ing ngisor iki.

480x480px

asam klorida dewe apa sing ditanggepi ala karo alcohols utami lan alcohols secondary, nanging kombinasi HCl karo ZnCl 2 (dikenal dados " Reagent Lucas ") efektif kanggo preparation saka amonium alkyl. Reaksi khas ditindakake ing 130   °C. Reaksi iki kerep dilakokake liwat mekanisme S <sub id="mw6A">N</sub> 2 karo alkohol utama nanging kanggo alkohol sekunder liwat mekanisme S <sub id="mw6g">N</sub> 1 .

300x300px

Zinc chloride uga ngaktivasi halimil benzyllic lan allylic ing arah penggantian nukleofil sing lemah kaya ta alkenes :[28]

480x480px

Kanthi gaya sing padha, ZnCl 2 ndhukung pengurangan selektif NaBH <sub id="mw-w">3</sub> CN ing senyawa tersier, allylic utawa benzylated dadi hidrokarbon sing cocok.

Zinc klorida uga minangka reagen wiwitan sing migunani kanggo sintesis saka reagen organik, kaya ta sing digunakake ing kopling Negishi sing diprakirake dening palladium karo aril halida utawa vinyl halida .[29] Ing kasus kasebut, senyawa organoseng biasane digawé dening transmetrasi saka reagen organolithium utawa Grignard, umpamane:

480x480px

Zinc enolate, disiapake saka enolate alkali logam lan ZnCl 2, nyedhiyakake kontrol stereokimia ing reaksi kondensasi aldol amarga chelation in seng. Ing conto ing ngisor iki, prodhuk threo luwih disenengi liwat eritros kanthi faktor 5: 1 nalika ZnCl 2 ing DME / eter digunakake.[30] Chelates luwih stabil yen klompok fenil pseudo- khatulistiwa saka pseudo- aksial, contone, threos dibanding eritrosit .

600x600px

Ing babagan tekstil lan kertas[besut | besut sumber]

Larutan zinc klorida (luwih saka 64% bobot / bobot seng klorida) ing banyu nduweni sipat sing menarik kanggo mbubehaké pati, sutra, lan selulosa . Mangkono, solusi kasebut ora bisa disaring liwat kertas panyaring standar. Kasedhiya babagan afinitas kasebut, ZnCl 2 digunakake minangka agen pemisah geni lan kain kaya ta Febreze. Serat retread digawé saka kertas sing nganggo klorida seng klorida.

Granat keluk[besut | besut sumber]

Komposisi asap zink klorida ("HC") sing digunakake ing granat gram ngandung zink oksida lan hexachlorethane, sing, nalika diobong, bereaksi kanggo mbentuk asap seng klorida, layar asap sing efektif.[31]

Deteksi cap driji[besut | besut sumber]

Ninhydrin bereaksi karo asam amino lan amina kanggo mbentuk senyawa berwarna "purple Ruhemann" (RP). Nyemprotake solusi seng klorida mbentuk komplek 1: 1 RP: ZnCl (H 2 O) 2, sing luwih gampang dideteksi amarga bisa fluoresce luwih apik tinimbang ungu Ruhemann.[32]

Disinfektan[besut | besut sumber]

Sacara historis, larutan zink klorida banyu sing dipigunakaké minangka disinfektan kanthi jeneng " Fluid Disinfecting Burnett ".[33] Senyawa iki uga digunakake ing pirang-pirang merek komersil mouthwash antiseptik.

Keamanan[besut | besut sumber]

Seng klorida minangka irritant kulit. Sawise kontak karo kulit, langsung nglakoni reresik kanthi nggunakake sinetron lan banyu lumaku. Yen kontak karo mripat, tumindak cukup kanggo njupuk banyu, nggunakake tetes mata Isogutt, lan langsung ngubungi ophthalmologist sanalika bisa.[34]

Seng klorida arupa caustic kanggo saluran pencernaan, kadhangkala tumuju marang hematemesis . Gejala keracunan akut sing bisa kedadeyan kaya ta indigestion, diare, mual, lan nyeri abdomen. Vomiting occurs meh universal. Cara dekontaminasi ing saluran gastrointestinal sawise njupuk senyawa zinc sacara oral ora akeh, amarga pasien biasane muntah kanthi cekap. Susu bisa diwenehi kanggo ngurangi panyerapan logam. Tingkat seng bisa normalake karo EDTA asin .[34]

Inhalasi seng seng, seng oksida, utawa seng klorida nyebabake edema pulmonary lan demam asam metalik. Serang ana ing 4-6 jam lan bisa ditundha nganti 8 jam. Gejala sing bisa kedadeyan yaiku ambegan kanthi cepet, watuk, demam, kedinginan, sweating, pain dada lan leg, myalgia, lemes, rasa metalik, saliva, thirst lan leukocytosis, sing bisa tahan 24 nganti 48 jam. Ing kasus inhalasi kumelun, persiapan cortisone kudu diterapake kanthi cepet (contone, kanthi nghirup Auxilosone ) kanggo ngindhari perkembangan edema paru.[34]

Rujukan[besut | besut sumber]

  1. a b O'Neil, M. J.; et al. (2001). The Merck index : an encyclopedia of chemicals, drugs, and biologicals. N. J.: Whitehouse Station. ISBN 0911910131. 
  2. a b "Uap seng klorida". Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health (NIOSH). 
  3. a b c d "NIOSH Pocket Guide to Chemical Hazards #0674". National Institute for Occupational Safety and Health (NIOSH). 
  4. a b c d Wells, A. F. (1984). Structural Inorganic Chemistry. Oxford: Clarendon Press. ISBN 0-19-855370-6.
  5. Oswald, H. R.; Jaggi, H. (1960). "Zur Struktur der wasserfreien Zinkhalogenide I. Die wasserfreien Zinkchloride". Helvetica Chimica Acta. 43 (1): 72–77. doi:10.1002/hlca.19600430109.
  6. Brynestad, J.; Yakel, H. L. (1978). "Preparation and Structure of Anhydrous Zinc Chloride". Inorganic Chemistry. 17 (5): 1376–1377. doi:10.1021/ic50183a059.
  7. Brehler, B. (1961). "Kristallstrukturuntersuchungen an ZnCl2". Zeitschrift für Kristallographie. 115 (5–6): 373–402. doi:10.1524/zkri.1961.115.5-6.373.
  8. Mackenzie, J. D.; Murphy, W. K. (1960). "Structure of Glass-Forming Halides. II. Liquid Zinc Chloride". The Journal of Chemical Physics. 33 (2): 366–369. doi:10.1063/1.1731151.
  9. Cithakan:Greenwood&Earnshaw
  10. a b c Prince, R. H. (1994). King, R. B. (èd.). Encyclopedia of Inorganic Chemistry. John Wiley & Sons. ISBN 0-471-93620-0.
  11. Ray, H. S. (2006). Introduction to Melts: Molten Salts, Slags and Glasses. Allied Publishers. ISBN 81-7764-875-6.
  12. Danek, V. (2006). Physico-Chemical Analysis of Molten Electrolytes. Elsevier. ISBN 0-444-52116-X.
  13. Price, D. L.; Saboungi, M.-L.; Susman, S.; Volin, K. J.; Wright, A. C. (1991). "Neutron Scattering Function of Vitreous and Molten Zinc Chloride". Journal of Physics: Condensed Matter. 3 (49): 9835–9842. doi:10.1088/0953-8984/3/49/001.
  14. a b c d Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.
  15. Pray, A. P. (1990). Inorganic Syntheses. Vol. 28. New York: J. Wiley & Sons. kc. 321–322. ISBN 0-471-52619-3.
  16. Mulzer, J.; Waldmann, H., èd. (1998). Organic Synthesis Highlights. Vol. 3. Wiley-VCH. ISBN 3-527-29500-3.
  17. Bouma, R. J.; Teuben, J. H.; Beukema, W. R.; Bansemer, R. L.; Huffman, J. C.; Caulton, K. G. (1984). "Identification of the Zinc Reduction Product of VCl3 · 3THF sebagai [V2Cl3(THF)6]2[Zn2Cl6]". Inorganic Chemistry. 23 (17): 2715–2718. doi:10.1021/ic00185a033.
  18. Irish, D. E.; McCarroll, B.; Young, T. F. (1963). "Raman Study of Zinc Chloride Solutions". The Journal of Chemical Physics. 39 (12): 3436–3444. doi:10.1063/1.1734212.
  19. Yamaguchi, T.; Hayashi, S.; Ohtaki, H. (1989). "X-Ray Diffraction and Raman Studies of Zinc(II) Chloride Hydrate Melts, ZnCl2 · RH2O (R = 1.8, 2.5, 3.0, 4.0, and 6.2)". The Journal of Physical Chemistry. 93 (6): 2620–2625. doi:10.1021/j100343a074.
  20. Pye, C. C.; Corbeil, C. R.; Rudolph, W. W. (2006). "An ab initio Investigation of Zinc Chloro Complexes". Physical Chemistry Chemical Physics. 8 (46): 5428–5436. doi:10.1039/b610084h. ISSN 1463-9076. PMID 17119651.
  21. Brown, I. D. (2006). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press. ISBN 0-19-929881-5.
  22. Olah, George A.; Doggweiler, Hans; Felberg, Jeff D.; Frohlich, Stephan; Grdina, Mary Jo; Karpeles, Richard; Keumi, Takashi; Inaba, Shin-ichi; Ip, Wai M. (1984). "Onium Ylide chemistry. 1. Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The onium ylide mechanism of the C1 → C2 conversion". J. Am. Chem. Soc. 106 (7): 2143–2149. doi:10.1021/ja00319a039.
  23. a b Chang, Clarence D. (1983). "Hydrocarbons from Methanol". Catal. Rev. - Sci. Eng. 25 (1): 1–118. doi:10.1080/01614948308078874.
  24. Cithakan:OrgSynth
  25. Cithakan:OrgSynth
  26. Dike, S. Y.; Merchant, J. R.; Sapre, N. Y. (1991). "A New and Efficient General Method for the Synthesis of 2-Spirobenzopyrans: First Synthesis of Cyclic Analogues of Precocene I and Related Compounds". Tetrahedron. 47 (26): 4775–4786. doi:10.1016/S0040-4020(01)86481-4.
  27. Furnell, B. S. (1989). Vogel's Textbook of Practical Organic Chemistry (édhisi ka-5th). New York: Longman/Wiley.
  28. Bauml, E.; Tschemschlok, K.; Pock, R.; Mayr, H. (1988). "Synthesis of γ-Lactones from Alkenes Employing p-Methoxybenzyl Chloride as +CH2-CO2 Equivalent" (PDF). Tetrahedron Letters. 29 (52): 6925–6926. doi:10.1016/S0040-4039(00)88476-2.
  29. Kim, S.; Kim, Y. J.; Ahn, K. H. (1983). "Selective Reduction of Tertiary, Allyl, and Benzyl Halides by Zinc-Modified Cyanoborohydride in Diethyl Ether". Tetrahedron Letters. 24 (32): 3369–3372. doi:10.1016/S0040-4039(00)86272-3.
  30. House, H. O.; Crumrine, D. S.; Teranishi, A. Y.; Olmstead, H. D. (1973). "Chemistry of Carbanions. XXIII. Use of Metal Complexes to Control the Aldol Condensation". Journal of the American Chemical Society. 95 (10): 3310–3324. doi:10.1021/ja00791a039.
  31. Sample, B. E. (1997). Methods for Field Studies of Effects of Military Smokes, Obscurants, and Riot-control Agents on Threatened and Endangered Species. DIANE Publishing. ISBN 1-4289-1233-9.
  32. Menzel, E. R. (1999). Fingerprint Detection with Lasers. CRC Press. ISBN 0-8247-1974-3.
  33. Watts, H. (1869). A Dictionary of Chemistry and the Allied Branches of Other Sciences. Longmans, Green.
  34. a b c Dieter M. M. Rohe; Hans Uwe Wolf (2007), "Zinc Compounds", Ullmann's Encyclopedia of Industrial Chemistry (édhisi ka-7th), Wiley, kc. 1–6, doi:10.1002/14356007.a28_537

Bibliografi[besut | besut sumber]

  • NN Greenwood, A. Earnshaw, Kimia Unsur, edisi kaping 2, Butterworth-Heinemann, Oxford, UK, 1997.
  • Lide, DR, ed. (2005). CRC Handbook of Chemistry and Physics (86th edition). Boca Raton (FL): CRC Press. ISBN   0-8493-0486-5 .
  • Indeks Merck, edisi kaping 7, Merck & Co, Rahway, New Jersey, USA, 1960.
  • D. Nicholls, Kompleks lan Unsur Transisi Kaping pisanan, Macmillan Press, London, 1973.
  • J. March, Advanced Organic Chemistry, 4th ed., P.   723, Wiley, New York, 1992.
  • GJ McGarvey, ing Handbook of Reagents for Organic Synthesis, Volume 1: Reagents, Auxiliaries and Catalysts for Formation Bonds Bond, (RM Coates, SE Dhènemarken, eds.), Pp.   220-3, Wiley, New York, 1999.

Pranala njaba[besut | besut sumber]