Tembaga

Saka Wikipédia Jawa, bauwarna mardika basa Jawa
Copper,  29Cu
Native copper (~4 cm in size)
General properties
Wujudmetallic bronze
Bobot atom standar (Ar, standard)63.546(3)[1]
Copper in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
-

Cu

Ag
nickelcopperzinc
Atomic number (Z)29
Groupgroup 11
Periodperiod 4
Blokd-block
Konfigurasi èlèktron[Ar] 3d10 4s1
Electrons per shell
2, 8, 18, 1
Sipat angga
Phase at STPsolid
Melting point1357.77 K ​(1084.62 °C, ​1984.32 °F)
Boiling point2835 K ​(2562 °C, ​4643 °F)
Density (near r.t.)8.96 g/cm3
when liquid (at m.p.)8.02 g/cm3
Heat of fusion13.26 kJ/mol
Heat of vaporization300.4 kJ/mol
Molar heat capacity24.440 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1509 1661 1850 2089 2404 2836
Atomic properties
Oxidation states+1, +2, +3, +4 ​mildly basic oxide
ElectronegativityPauling scale: 1.90
Ionization energies
Atomic radiusempirical: 128 pm
calculated: 145 pm
Covalent radius138 pm
Van der Waals radius140 pm
Color lines in a spectral range
Miscellanea
Crystal structure ​face centered cubic
0.3610 nm
[[File:face centered cubic
0.3610 nm|frameless|alt=Face centered cubic
0.3610 nm crystal structure for copper|upright=0.23]]
Speed of sound thin rod(annealed)
3810 m/s (at r.t.)
Thermal expansion16.5 µm/(m·K) (at 25 °C)
Thermal conductivity401 W/(m·K)
Electrical resistivity16.78 n Ω·m (at 20 °C)
Magnetic orderingdiamagnetic
Young's modulus110 - 128 GPa
Shear modulus48 GPa
Bulk modulus140 GPa
Poisson ratio0.34
Mohs hardness3.0
Vickers hardness369 MPa
Brinell hardness874 MPa
CAS Number7440-50-8
Main isotopes of copper
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
63Cu 69.15% Cu stabil kanthi 34 neutron
65Cu 30.85% Cu stabil kanthi 36 neutron
| references | [[:d:Masalah skrip: Fungsi "pageId" ora ana.|in Wikidata]]

Tembaga minangka unsur kimia; gadhah simbol Cu (saking Latin: cuprum) lan nomer atom 29. Menika alus, lentur, lan kemrèk logam kanthi konduktivitas termal lan konduktivitas listrik ingkang dhuwur. Permukaan resik tembaga ingkang nembe kabuka gadhah warni jingga-kemerahan. Tembaga dipun-ginakaken minangka konduktor panas lan listrik, minangka bahan bangunan, lan minangka bagean saking macem-macem campuran paduan logam, kados ta sterling silver ingkang dipun-ginakaken ing perhiasan, cupronickel kangge damel piranti laut lan uang, lan constantan kangge dipun-ginakaken ing strain gauge lan termokopel kangge ukuran suhu.

Tembaga, perak, lan emas wonten ing golongan 11 ing tabel periodik; tigang logam menika gadhah siji elektron s-orbital ing ndhuwur lapisan d-kulit elektron ingkang sampun kebak lan dipunkarakteristikaken kanthi keluwesan keuletan ingkang dhuwur, konduktivitas listrik lan panas. Lapisan d-kulit ingkang sampun kebak wonten ing elemen-elemen menika sethithik maringi kontribusi dhateng interaksi antaratomi, ingkang dominan dipunpengaruhi déning elektron-elektron s liwat ikatan logam. Beda kaliyan logam ingkang gadhah lapisan d ingkang boten sampurna, ikatan logam ing tembaga kurang karakter kovalen lan lumrahé ringkih. Panyinaon menika nerangaken kenapa kekerasan tembaga kirang lan keuletanipun dhuwur ing kristal tunggal.[2] Ing skala makroskopis, pengenalan cacat sing suwe ing kristal kisi, kados ta watesan biji-biji, nyegah aliran bahan ingkang dipunbebani stres, saéngga ningkataken kekerasanipun. Amargi saking punika, tembaga umume dipunsayogakaken wonten ing wangun polikristalin ingkang gadhah kekuatan langkung dhuwur tinimbang wangun monokristalin.[3]

Kalembutan tembaga nderekaken konduktivitas listrikipun ingkang dhuwur (59.6×106 S/m) lan konduktivitas panas ingkang ugi dhuwur, nomer kalih (mung kalah karo perak) ing antawisipun logam murni ing suhu kamar.[4] Amargi resistivitas dhateng transpor elektron ing logam ing suhu kamar utamanipun asal saking paburenan elektron dhateng vibrasi termal ing kisi, ingkang relatif alit ing logam alus.[2] Densitas arus maksimal ingkang kenging dipunijini kanggé tembaga ing udhara mbukak kirang langkung 3.1×106 A/m2, ing ndhuwuripun wiwit panas kanthi kalebu.[5]

Sitiran[besut | besut sumber]

  1. Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. a b Trigg, George L.; Immergut, Edmund H. (1992). Encyclopedia of Applied Physics. Vol. 4: Combustion to Diamagnetism. VCH. kc. 267–272. ISBN 978-3-527-28126-8. Dibukak ing 2 May 2011.
  3. Smith, William F. & Hashemi, Javad (2003). Foundations of Materials Science and Engineering. McGraw-Hill Professional. kc. 223. ISBN 978-0-07-292194-6.
  4. Hammond, C. R. (2004). The Elements, in Handbook of Chemistry and Physics (édhisi ka-81st). CRC Press. ISBN 978-0-8493-0485-9.
  5. Resistance Welding Manufacturing Alliance (2003). Resistance Welding Manual (édhisi ka-4th). Resistance Welding Manufacturing Alliance. kc. 18–12. ISBN 978-0-9624382-0-2.