Barkas:All palaeotemps.png

Konten halaman tidak didukung dalam bahasa lain.
Saka Wikipédia Jawa, bauwarna mardika basa Jawa

Berkas asli(1.753 × 565 piksel, ukuran barkas: 90 KB, jinis MIME: image/png)

Barkas iki saka Wikimedia Commons lan kena kanggo proyèk liya. Panyandraning kaca panyandra barkasé kapacak ing ngisor.

Panyandra
English: Global average temperature graph estimates for the last 540 My
Sumber Karya dhéwé; data sources are cited below
Juru pangarang Glen Fergus
Vèrsi liya
File:All palaeotemps.svg merupakan versi vektor dari berkas ini. Berkas itu harus digunakan menggantikan gambar raster ini jika kualitasnya tidak rendah.

File:All palaeotemps.png → File:All palaeotemps.svg

Untuk informasi lanjutan, lihat Bantuan:SVG.

Dalam bahasa lainnya
Alemannisch  Bahasa Indonesia  Bahasa Melayu  British English  català  čeština  dansk  Deutsch  eesti  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Ido  italiano  lietuvių  magyar  Nederlands  norsk bokmål  norsk nynorsk  occitan  Plattdüütsch  polski  português  português do Brasil  română  Scots  sicilianu  slovenčina  slovenščina  suomi  svenska  Tiếng Việt  Türkçe  vèneto  Ελληνικά  беларуская (тарашкевіца)  български  македонски  нохчийн  русский  српски / srpski  татарча/tatarça  українська  ქართული  հայերեն  বাংলা  தமிழ்  മലയാളം  ไทย  한국어  日本語  简体中文  繁體中文  עברית  العربية  فارسی  +/−
Gambar SVG baru

Ringkesan

This shows estimates of earth's global average surface air temperature over the ~540 My of the Phanerozoic Eon, since the first major proliferation of complex life forms on our planet. A substantial achievement of the last 30 years of climate science has been the production of a large set of actual measurements of temperature history (from physical proxies), replacing much of the earlier geological induction (i.e. informed guesses). The graph shows selected proxy temperature estimates, which are detailed below.

Because many proxy temperature reconstructions indicate local, not global, temperature -- or ocean, not air, temperature -- substantial approximation may be involved in deriving these global temperature estimates. As a result, the relativities of some of the plotted estimates are approximate, particularly the early ones.

Time scale

Time is plotted forward to the present, taken as 2015 CE. It joins five separate linearly scaled segments, expanding by about an order of magnitude at each vertical break. The breaks are not evenly distributed; rather they are positioned at geologically relevant times, which might be misleading since the break in the last interglacial makes it seem much longer:

  • At the MesozoicCenozoic boundary, ~65 My ago. This is the "K-T" boundary (now called "Cretaceous–Paleogene"), at which the dinosaurs became extinct.
  • At the MiocenePliocene boundary, ~5.3 My ago.
  • One million years ago, near the onset of the current, 100,000 year-dominated, glaciation cycle (previous glaciations were shorter).
  • Near the last glacial maximum, 20,000 years ago.

Temperature scale

Surface air temperature is plotted as anomalies (differences) from the average over the reference interval 1960–1990 (which is about 14°C / 57°F), in both Celsius (left) and Fahrenheit (right).

Data

Panel 1: 540 to 65 million years ago

The panel 1 data is from stable oxygen isotope measurements from the shells of macroscopic marine organisms, collected by Veizer et al (1999),[1] as re-interpreted by Royer et al (2004).[2] The graph effectively reproduces the upper panel of Royer et al's figure 4, but with an expanded range (see below). The orange band shows the effect of extreme assumptions in application of the GEOCARB reconstruction to interpretation, and is not representative of the full uncertainly (which would be much larger).

Because the Royer and Veizer results are indicative of the temperature of the shallow tropical and subtropical seas where the organisms lived,[2] they are unlikely to be fully representative of global average surface air temperature variation. The anomalies are plotted here expanded by a factor of two, as a very approximate conversion. Multiple confounding factors affect interpretation of samples this old, so panel 1 is best viewed as a qualitative indication of temperature (warmer/colder).[3]

Panel 2: 65 to 5.3 million years ago

This data is from the Hansen et al (2013)[4] interpretation of the global collection of oxygen isotope data from microscopic marine organisms of Zachos et al (2008).[5]

This is a direct estimate of global average sea surface temperature, a close analogue of surface air temperature. Hansen et al describe it as a "first estimate", meaning an approximate one, but limited independent corroboration (e.g. Zachos et al (2006)[6] for the Eocene optimum) indicates that it is substantially more quantitative than panel 1.

Panel 3: 5.3 to 1 million years ago

This data is from the Lisiecki and Raymo (2005)[7][8] global stack of oxygen isotope data from microscopic marine organisms interpreted using the Hansen et al (2013)[4] prescription.

At this scale, the Zachos et al stack (which also covers this interval) is virtually indistinguishable from the Lisiecki and Raymo stack. This is a direct estimate of global average sea surface temperature.

Panel 4: 1 million to 20,000 years ago

Two datasets are plotted:

  1. Lisiecki and Raymo, as in panel 3.
  2. Temperature estimates from stable hydrogen isotope measurements from the EPICA Dome C ice core from central Antarctica[9] These temperature anomaly estimates are polar, not global, and are here divided by a standard polar amplification factor (2.0, as for example in Hansen et al (2013)[4]) to approximately convert them to global estimates.

Panel 5: 20,000 years ago to present (2015)

Five datasets are plotted:

  1. EPICA Dome C, as in panel 4.
  2. Temperature estimates from oxygen isotope measurements on the north Greenland ice core, NGRIP,[10] interpreted using the simple procedure of Johnsen et al (1989).[11] (There are more modern and complex procedures which would yield slightly different interpretations.) Like the EPICA Dome C record, this record is polar, and is shown divided by a polar amplification factor of 2.0. The difference between this and dataset 1. illustrates the polar sea-saw hypothesis.
  3. Global temperature estimates over the ~12,000 years of the Holocene from the multi-proxy collection and interpretation of Marcott et al (2013).[12]
  4. Instrumental (not proxy) data since 1850 from the Berkeley Earth project land-ocean dataset (2014),[13] plotted as decadal means.
  5. Projected temperatures for 2050 and 2100 from the IPCC Fifth Assessment Report's WG1 Summary for Policy Makers (2013)[14] for the RCP8.5 scenario.

Open source

The Microsoft Excel spreadsheet that produced this image is available here: All_palaeotemps.xlsx. Retrieved on 3 May 2014..

References

  1. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. and Strauss, H. (1999) 87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater. Chemical Geology 161, 59-88.
  2. a b Royer, Dana L. and Robert A. Berner, Isabel P. Montañez, Neil J. Tabor, David J. Beerling (2004) CO2 as a primary driver of Phanerozoic climate GSA Today July 2004, volume 14, number 3, pages 4-10, doi:10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2
  3. Royer, Dana (23 March 2014). Dana Royer comment at RealClimate. RealClimate.
  4. a b c Hansen, J., Mki. Sato, G. Russell, and P. Kharecha, 2013: Climate sensitivity, sea level, and atmospheric carbon dioxide. Phil. Trans. R. Soc. A, 371, 20120294. doi:10.1098/rsta.2012.0294
  5. Zachos JC, Dickens GR, Zeebe RE. 2008 An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283. doi:10.1038/nature06588
  6. Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. & Bralower, T. J. (2006). Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data. Geology, 34(9), 737-740.
  7. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1).
  8. Lisiecki, L. E.; Raymo, M. E. (May 2005). Correction to "A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records". Paleoceanography: PA2007. doi:10.1029/2005PA001164
  9. Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., ... & Wolff, E. W. (2007). EPICA Dome C ice core 800kyr deuterium data and temperature estimates. IGBP PAGES/World Data Center for Paleoclimatology data contribution series, 91, 2007.
  10. Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P., Caillon, N., ... & White, J. W. C. (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431(7005), 147-151.
  11. Johnsen, S. J., Dansgaard, W., & White, J. W. C. (1989). The origin of Arctic precipitation under present and glacial conditions. Tellus B, 41(4), 452-468.
  12. Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C. (2013). A reconstruction of regional and global temperature for the past 11,300 years. Science, 339(6124), 1198-1201.
  13. Berkeley Earth land-ocean dataset (2014). Retrieved on 21 March 2014.
  14. IPCC Fifth Assessment Report WG1 Summary for Policy Makers (2013).

See also

Global monthly land-ocean temperature estimates since 1850

Lisènsi

w:id:Creative Commons
atribusi andum mèmper
Barkas iki kalilakaké sangisoring palilah Creative Commons Atribusi-Andum Mèmper 3.0 Tanpa Adhaptasi.
Kowé kena:
  • ngedum – nyalin, nyebar, lan ngirim karya
  • nyampur – ngolah karya
Sangisoré kahanan mangkéné:
  • atribusi – Kowé kudu mènèhi krédhit kang patut, mènèhi pranala lisènsi, lan kandha yèn ana owah-owahan. Kowé bisa tumindak sasenengmu, nanging ora teges kang duwé lisènsi njurung lakumu.
  • andum mèmper – Manawa kowé nyalin rupa, ngowahi, utawa nggawé karya nganggo bahan karya iki, kowé kudu mbabar karyamu kang wis dadi nganggo lisènsi kang padha utawa kang cocog karo karya asliné..

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

gegambaran

status hak cipta Indonesia

berhak cipta Indonesia

tipe media Indonesia

image/png

checksum Inggris

97f9c9f05eb608693ef3973038b8971ca1cef586

metode penentuan Indonesia: SHA-1 Indonesia

ukuran data Indonesia

92.640 Bita

tinggi Indonesia

565 piksel

lebar Indonesia

1.753 piksel

Sajarahing berkas

Klik ing tanggal/wektuné saprelu ndeleng rupané barkasé nalika tanggal iku.

(anyar dhéwé | lawas dhéwé) Deleng (10 luwih anyar | ) (10 | 20 | 50 | 100 | 250 | 500)
Tanggal/WektuGambar cilikAlang ujurNaragunaTanggepan
saiki3 April 2014 04.41Gambar cilik kanggo owahan 3 April 2014 04.411.753 × 565 (90 KB)Glen Fergus=SVG version
21 Maret 2014 23.17Gambar cilik kanggo owahan 21 Maret 2014 23.171.754 × 567 (92 KB)Glen FergusUpdated for SVG version
21 Maret 2014 09.20Gambar cilik kanggo owahan 21 Maret 2014 09.201.753 × 567 (93 KB)Gergyl+ Anthropocene
21 Maret 2014 04.45Gambar cilik kanggo owahan 21 Maret 2014 04.451.752 × 567 (92 KB)Glen FergusFix panel 5 axis ticks
21 Maret 2014 03.35Gambar cilik kanggo owahan 21 Maret 2014 03.351.768 × 567 (89 KB)Glen FergusFix border
21 Maret 2014 02.20Gambar cilik kanggo owahan 21 Maret 2014 02.201.742 × 547 (90 KB)Glen FergusImproved graphics; incorporate more recent data.
1 Januari 2008 10.00Gambar cilik kanggo owahan 1 Januari 2008 10.002.385 × 1.067 (329 KB)Glen Fergus{{Information |Description= |Source= |Date= |Author= |Permission= |other_versions= }}
12 Novèmber 2007 08.18Gambar cilik kanggo owahan 12 Novèmber 2007 08.182.385 × 1.067 (327 KB)Glen Fergus
6 Fèbruari 2007 07.51Gambar cilik kanggo owahan 6 Fèbruari 2007 07.512.385 × 1.067 (324 KB)Glen Fergus
6 Fèbruari 2007 07.13Gambar cilik kanggo owahan 6 Fèbruari 2007 07.132.385 × 1.067 (316 KB)Glen Fergus
(anyar dhéwé | lawas dhéwé) Deleng (10 luwih anyar | ) (10 | 20 | 50 | 100 | 250 | 500)

Ora ana kaca kang nganggo barkas iki.

Panggunané barkas sajagat

Wiki liya ngisor iki nganggo barkas iki:

Métadhatah